Last Update: Thursday July 29, 2021

# Pi Tells Us Far More About The Universe Than We Currently Acknowledge

3.14159265358979323846264338327950288419716939937510

1. Pi is a constant.
2. Pi is an irrational number.
3. Pi is a transcendental number.
4. Pi is a non-repeating number - no pattern has been identified using computer analysis within over twelve trillion places.
5. Pi ( π ) is the exact ratio of the circumference of a circle to its diameter.   It is that simple.

Thank you, Wikipedia, for the graphics in the right column that demonstrate this simple definition.

So, what do you make of it?  What is going on?

Perhaps a few more questions and comments would help.

1. What is it about a circle and sphere that pi  is always-always- always true?
2. How does a number become a constant, irrational and transcendental all at the same time?
3. Let us compare pi to other unique numbers that have a special role among all numbers.  These are e, 0, 1, π and I.  What are the shared qualities of these numbers?  Let's study them all to see if we can find any necessary relations.
4. We have the ratio between a circle and a line.  Perhaps this is the fundamental transformation between the finite and infinite? Are circles and spheres always implicating or imputing the infinite?

That is a big question and enough to ponder for awhile.

Notwithstanding, there are many more questions to ask.

Some speculations: Pi may be the key to unlock the small-scale universe within the big Board-little universe

1.   To get to the application of pi  within the Planck Units, we'll need to emerge from the singularity of the Planck Units.  Is the radian a key to understanding this process?  First, a radius is extended from the singularity.  A radius extends into the preconditions for space and time, a now emergent small-scale universe. It makes that first arc equal to its own length.  It does it again and again and again and again and again (six radians) and then makes that last leap, 2 pi, to complete the circle. Is this a reasonable scenario? Why? Why not?

2. We need to run through dozens of scenarios, often, and slowly and carefully.  What scenarios are perfect and obvious?

What happens within the first ten doublings?    (to be continued)

For further discussion:

1.  Is the Small-scale Universe the basis for the homogeneity and isotropy of space and time?

2.  Does everything in the universe share some part of the Small-Scale universe?

3.  How is Planck Temperature calculated?  Does it begin with the other Planck Units and

expand from that figure at the first notation?

Note:  All of human history has occurred in the last doubling.  Yet, all doublings remain active and current and dynamic.  Continuity trumps time. Symmetries trump space.

What does sleep have to do with anything?  If all time is current, within the moment, we particularize by the day and uniquely within a given waking day.  Sleep seems to bring us into the infinite.  Dreams seem to be the helter-skelter bridge between the finite and infinite.  These naïve thought are worth exploring further.